Mouvement et forces

Objectifs:

- Connaître les effets d'une action mécanique
- Savoir modéliser une action mécanique par une force.
- Savoir qu'une force s'exerçant sur un corps modifie la valeur de sa vitesse et/ou la direction de son mouvement et que cette modification dépend de la masse du corps.
- Utiliser le principe de l'inertie pour interpréter des mouvements.
- Porter un regard critique sur un protocole de mesure d'une durée en fonction de la précision attendue.

1. De l'action mécanique à sa modélisation

- 1- Actions mécaniques de contact et à distance
- Lorsqu'un objet agit sur un autre objet, on parle d'
 - L'objet qui agit est appelé le
 - L'objet qui reçoit est appelé le
- Il existe deux grandes familles d'actions mécaniques :
 - → Les actions mécaniques : lorsqu'il y a contact entre le donneur et le receveur,
 - → <u>Les actions mécaniques</u> : lorsqu'il n'y a pas de contact entre le donneur et le receveur.

Exemples:

- -

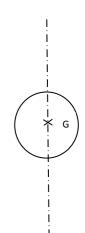
- Lorsqu'on souhaite décrire une action, il faut préciser où celle-ci s'exerce :
 - → <u>Une action mécanique est</u> si elle s'applique en un endroit précis du receveur,
 - → <u>Une action mécanique est</u> si elle est appliquée sur l'ensemble (ou seulement une partie) du receveur.

Exemples:

2- Modélisation d'une action mécanique par une force

- > Il existe par conséquent des forces de contact et des forces agissant à distance.
 - 3- Représentation d'une force
 - a- La valeur d'une force
- La s'exprime en , de symbole .
- Elle se mesure avec un (photo ci-contre).
- Plus la valeur d'une force est , plus les effets qu'elle engendre sur le mouvement d'un corps sont

b- Le vecteur force


- Une force est caractérisée par :
 - o Une
 - o Un
 - o Une
- Le d'une force est le point où l'on considère que s'exerce la force.
- Sur un schéma, une force est représentée par un segment fléché, appelé
 . Il est représenté en partant du

Exemple : force exercée sur une balle de golf en chute libre, poids de la balle.

- Point d'application :
- Direction:
- <u>Sens</u>:
- <u>Valeur de la force</u>:

 avec g: ; g = 9,8 N.kg⁻¹

 m: masse de la balle, en kg; m = 46g =

Schéma de la situation :

La longueur du vecteur est proportionnelle à la valeur du poids du corps. P =

4- Exemples de forces

Le poids :

- La Terre attire tous les corps situés dans son environnement.
- La force exercée par la Terre sur un corps est appelée le poids du corps.
- C'est une force agissant à distance, répartie sur l'ensemble de l'objet.

▲ La réaction du support :

- Une balle posée sur une table ne tombe pas.
- La force exercée par un support sur un objet est appelée la réaction du support.
- C'est une force de contact, répartie sur l'ensemble de la surface de contact.

Les forces pressantes :

- Un corps entouré par un gaz ou par un liquide est soumis à une force résultant de forces pressantes exercées par le gaz ou le liquide.
- Ces forces de contact s'exercent que le corps soit immobile ou en mouvement.

Les forces de frottement :

- Tout corps en mouvement est soumis à des forces de frottements.
- Ce sont des forces de contact qui s'opposent au déplacement.
- Elles sont exercées soit par le solide, soit par le fluide (liquide ou gaz) avec lequel le corps est en contact.
- Les forces de frottement sur un corps peuvent être **négligées** quand **leurs effets sont faibles devant les effets des autres forces** s'exerçant sur le corps.

2. Effet d'une force sur le mouvement

1- Les différents effets d'une force

 Lors d'une activité sportive, la force exercée sur un système peut avoir diverses conséquences sur son mouvement.

Mise en mouvement

a. L'action de la corde sur la flèche met la flèche en mouvement.

Modification du mouvement

b. L'action de la main sur le ballon modifie le mouvement du ballon.

Arrêt du mouvement

c. L'action des mains sur le ballon peut arrêter le mouvement du ballon.

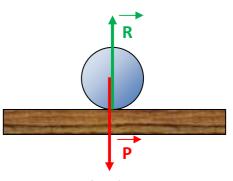
doc. 5 Exemples d'effet d'une force sur un mouvement étudié dans un référentiel terrestre.
D'après Physique Chimie 2^{de}, éditions Hachette, 2010.

- Une force exercée sur un objet peut :
 - le
 - modifier , c'est-à-dire
 - le ou

2- Influence de la masse d'un corps

- Les sur le mouvement d'un objet dépendent de la
- Ils sont d'autant plus que la masse est , et inversement.

Exemples:


- Au bowling, la boule est d'autant plus difficile à mettre en mouvement que sa masse est petite.
- Dans une course de Formule 1, plus la voiture est légère, plus la force de freinage est efficace.

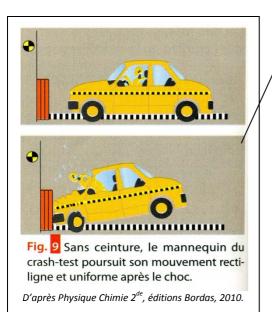
3

3. Principe d'inertie

1- Forces qui se compensent

- Les **s'exerçant sur un corps** si leurs effets combinés n'engendrent
- La somme des vecteurs associés à des forces qui se compensent est un
- « Un corps est soumis à des forces qui se compensent. » est équivalent à
 - « Un corps n'est soumis à aucune force. »

Balle de golf posée sur une table.


2- Enoncé du principe d'inertie

 \supset

Enoncé du principe d'inertie ou 1ère loi de Newton

Sir Isaac Newton (1642-1726)

- Lors d'un choc frontal, le passager d'une voiture (non attaché par une ceinture de sécurité) est projeté contre le pare-brise.
- Comme la sur le passager , le passager est
- D'après le principe de l'inertie, le passager continue donc son

3- Réciproque du principe d'inertie

Quand un point d'un corps en mouvement n'a , dans un référentiel donné, alors

Exemple:

- On étudie le mouvement d'une balle en chute libre, c'est-àdire simplement lâchée près de la surface de la Terre. (photo ci-contre).
- On constate que sa chute est verticale, donc son mouvement est
- > Cependant, sa au cours du mouvement.
- > D'après la réciproque du principe d'inertie, on en déduit que

Chronophotographie d'une balle qui tombe sans vitesse initiale.